Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.885
Filtrar
1.
Rinsho Shinkeigaku ; 64(4): 280-285, 2024 Apr 24.
Artigo em Japonês | MEDLINE | ID: mdl-38522912

RESUMO

A 75-year-old woman was referred to our department in October 2022 with ataxia and involuntary movements of the right upper and lower limbs. She had experienced a left pontine hemorrhage in March 2021, which was managed conservatively. However, she had residual right-sided hemiplegia. In addition, she had cerebellar ataxia and a 2 |Hz resting tremor of the right upper and lower limbs, which was enhanced while maintaining posture and contemplation. Based on her history, and the findings of MRI and nuclear medicine imaging, we diagnosed the patient with Holmes tremor due to pontine hemorrhage. Holmes tremor is a rare movement disorder secondary to brainstem and thalamic lesions, characterized by a unilateral low-frequency tremor. In this case, 123I-IMP SPECT and MRI shows damage to the cerebellothalamic tract and dentaro-rubro-olivary pathway.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada de Emissão de Fóton Único , Tremor , Humanos , Feminino , Idoso , Tremor/etiologia , Tremor/diagnóstico por imagem , Núcleo Olivar/diagnóstico por imagem , Núcleo Olivar/patologia , Tálamo/diagnóstico por imagem , Tálamo/patologia , Iofetamina , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/etiologia , Radioisótopos do Iodo
2.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38195508

RESUMO

The olivo-cerebellar system plays an important role in vertebrate sensorimotor control. Here, we investigate sensory representations in the inferior olive (IO) of larval zebrafish and their spatial organization. Using single-cell labeling of genetically identified IO neurons, we find that they can be divided into at least two distinct groups based on their spatial location, dendritic morphology, and axonal projection patterns. In the same genetically targeted population, we recorded calcium activity in response to a set of visual stimuli using two-photon imaging. We found that most IO neurons showed direction-selective and binocular responses to visual stimuli and that the functional properties were spatially organized within the IO. Light-sheet functional imaging that allowed for simultaneous activity recordings at the soma and axonal level revealed tight coupling between functional properties, soma location, and axonal projection patterns of IO neurons. Taken together, our results suggest that anatomically defined classes of IO neurons correspond to distinct functional types, and that topographic connections between IO and cerebellum contribute to organization of the cerebellum into distinct functional zones.


Assuntos
Núcleo Olivar , Peixe-Zebra , Animais , Larva , Núcleo Olivar/fisiologia , Neurônios/fisiologia , Cerebelo/fisiologia
3.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242692

RESUMO

The olivocerebellar system, which is critical for sensorimotor performance and learning, functions through modules with feedback loops. The main feedback to the inferior olive comes from the cerebellar nuclei (CN), which are predominantly GABAergic and contralateral. However, for the subnucleus d of the caudomedial accessory olive (cdMAO), a crucial region for oculomotor and upper body movements, the source of GABAergic input has yet to be identified. Here, we demonstrate the existence of a disynaptic inhibitory projection from the medial CN (MCN) to the cdMAO via the superior colliculus (SC) by exploiting retrograde, anterograde, and transsynaptic viral tracing at the light microscopic level as well as anterograde classical and viral tracing combined with immunocytochemistry at the electron microscopic level. Retrograde tracing in Gad2-Cre mice reveals that the cdMAO receives GABAergic input from the contralateral SC. Anterograde transsynaptic tracing uncovered that the SC neurons receiving input from the contralateral MCN provide predominantly inhibitory projections to contralateral cdMAO, ipsilateral to the MCN. Following ultrastructural analysis of the monosynaptic projection about half of the SC terminals within the contralateral cdMAO are GABAergic. The disynaptic GABAergic projection from the MCN to the ipsilateral cdMAO mirrors that of the monosynaptic excitatory projection from the MCN to the contralateral cdMAO. Thus, while completing the map of inhibitory inputs to the olivary subnuclei, we established that the MCN inhibits the cdMAO via the contralateral SC, highlighting a potential push-pull mechanism in directional gaze control that appears unique in terms of laterality and polarity among olivocerebellar modules.


Assuntos
Cerebelo , 60442 , Camundongos , Animais , Núcleo Olivar/fisiologia , Núcleo Olivar/ultraestrutura , Transmissão Sináptica , Núcleos Cerebelares/fisiologia
4.
Clin Neuropsychol ; 38(1): 235-246, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37021325

RESUMO

Objective: Hypertrophic Olivary Degeneration is a rare condition causing transneuronal degeneration of the inferior olivary nucleus. Symptoms manifest as progressively worsening palatal tremor, ataxia, and eye movement disturbances that plateau after several months. Though rarely documented in the literature of this specific condition, disconnection of the inferior olivary nucleus from the cerebellum, and cerebellar atrophy represent a pathway to developing subsequent cerebellar cognitive affective syndrome. The presented case documents the neuropsychological sequelae of a 39-year-old female with a history of hypertrophic olivary degeneration and symptoms of palatal tremor, opsoclonus myoclonus, ataxia, and delusions. Method: Review of the patient's medical records, interviews with the patient and her father, and a neuropsychological assessment battery were used to collect data. Review of currently published literature lent to case conceptualization. Results: Neuropsychological testing revealed deficits in executive functioning, attention, and language. An anomalous, fixed persecutory delusion was revealed. Conclusion: Hypertrophic olivary degeneration creates disconnection syndromes between the inferior olivary nucleus, red nucleus, and cerebellum. Late stages of the disorder cause atrophy of the inferior olivary nucleus and adjacent structures. While the motor sequela is well documented, the neuropsychological and psychiatric impact is infrequently discussed in existing literature. We present the first case to detail the neuropsychological sequelae of hypertrophic olivary degeneration and propose a mechanism for the development of cognitive impairment and psychotic features within this condition.


Assuntos
Tremor , Feminino , Humanos , Adulto , Tremor/diagnóstico , Tremor/etiologia , Tremor/patologia , Núcleo Olivar/patologia , Testes Neuropsicológicos , Ataxia/complicações , Ataxia/patologia , Atrofia/complicações , Atrofia/patologia , Cognição , Imageamento por Ressonância Magnética
6.
J Acoust Soc Am ; 154(6): 3644-3659, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051523

RESUMO

An auditory model has been developed with a time-varying, gain-control signal based on the physiology of the efferent system and subcortical neural pathways. The medial olivocochlear (MOC) efferent stage of the model receives excitatory projections from fluctuation-sensitive model neurons of the inferior colliculus (IC) and wide-dynamic-range model neurons of the cochlear nucleus. The response of the model MOC stage dynamically controls cochlear gain via simulated outer hair cells. In response to amplitude-modulated (AM) noise, firing rates of most IC neurons with band-enhanced modulation transfer functions in awake rabbits increase over a time course consistent with the dynamics of the MOC efferent feedback. These changes in the rates of IC neurons in awake rabbits were employed to adjust the parameters of the efferent stage of the proposed model. Responses of the proposed model to AM noise were able to simulate the increasing IC rate over time, whereas the model without the efferent system did not show this trend. The proposed model with efferent gain control provides a powerful tool for testing hypotheses, shedding insight on mechanisms in hearing, specifically those involving the efferent system.


Assuntos
Núcleo Coclear , Colículos Inferiores , Animais , Coelhos , Colículos Inferiores/fisiologia , Núcleo Coclear/fisiologia , Vias Eferentes/fisiologia , Cóclea/fisiologia , Audição/fisiologia , Núcleo Olivar/fisiologia , Vias Auditivas/fisiologia
7.
J Assoc Res Otolaryngol ; 24(6): 619-631, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079021

RESUMO

PURPOSE: The role of the medial olivocochlear system in speech perception in noise has been debated over the years, with studies showing mixed results. One possible reason for this could be the dependence of this relationship on the parameters used in assessing the speech perception ability (age, stimulus, and response-related variables). METHODS: The current study assessed the influence of the type of speech stimuli (monosyllables, words, and sentences), the signal-to-noise ratio (+5, 0, -5, and -10 dB), the metric used to quantify the speech perception ability (percent-correct, SNR-50, and slope of the psychometric function) and age (young vs old) on the relationship between medial olivocochlear reflex (quantified by contralateral inhibition of transient evoked otoacoustic emissions) and speech perception in noise. RESULTS: A linear mixed-effects model revealed no significant contributions of the medial olivocochlear reflex to speech perception in noise. CONCLUSION: The results suggest that there was no evidence of any modulatory influence of the indirectly measured medial olivocochlear reflex strength on speech perception in noise.


Assuntos
Percepção da Fala , Percepção da Fala/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia , Fala , Ruído , Reflexo , Cóclea/fisiologia , Núcleo Olivar/fisiologia , Estimulação Acústica
8.
Front Neural Circuits ; 17: 1307283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107610

RESUMO

Auditory brainstem neurons in the lateral superior olive (LSO) receive excitatory input from the ipsilateral cochlear nucleus (CN) and inhibitory transmission from the contralateral CN via the medial nucleus of the trapezoid body (MNTB). This circuit enables sound localization using interaural level differences. Early studies have observed an additional inhibitory input originating from the ipsilateral side. However, many of its details, such as its origin, remained elusive. Employing electrical and optical stimulation of afferents in acute mouse brainstem slices and anatomical tracing, we here describe a glycinergic projection to LSO principal neurons that originates from the ipsilateral CN. This inhibitory synaptic input likely mediates inhibitory sidebands of LSO neurons in response to acoustic stimulation.


Assuntos
Núcleo Coclear , Localização de Som , Complexo Olivar Superior , Animais , Camundongos , Complexo Olivar Superior/fisiologia , Núcleo Coclear/fisiologia , Núcleo Olivar/fisiologia , Localização de Som/fisiologia , Neurônios/fisiologia , Vias Auditivas/fisiologia
9.
J Neurosci ; 43(46): 7766-7779, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734946

RESUMO

The medial nucleus of the trapezoid body (MNTB) in the auditory brainstem is the principal source of synaptic inhibition to several functionally distinct auditory nuclei. Prominent projections of individual MNTB neurons comprise the major binaural nuclei that are involved in the early processing stages of sound localization as well as the superior paraolivary nucleus (SPON), which contains monaural neurons that extract rapid changes in sound intensity to detect sound gaps and rhythmic oscillations that commonly occur in animal calls and human speech. While the processes that guide the development and refinement of MNTB axon collaterals to the binaural nuclei have become increasingly understood, little is known about the development of MNTB collaterals to the monaural SPON. In this study, we investigated the development of MNTB-SPON connections in mice of both sexes from shortly after birth to three weeks of age, which encompasses the time before and after hearing onset. Individual axon reconstructions and electrophysiological analysis of MNTB-SPON connectivity demonstrate a dramatic increase in the number of MNTB axonal boutons in the SPON before hearing onset. However, this proliferation was not accompanied by changes in the strength of MNTB-SPON connections or by changes in the structural or functional topographic precision. However, following hearing onset, the spread of single-axon boutons along the tonotopic axis increased, indicating an unexpected decrease in the tonotopic precision of the MNTB-SPON pathway. These results provide new insight into the development and organization of inhibition to SPON neurons and the regulation of developmental plasticity in diverging inhibitory pathways.SIGNIFICANCE STATEMENT The superior paraolivary nucleus (SPON) is a prominent auditory brainstem nucleus involved in the early detection of sound gaps and rhythmic oscillations. The ability of SPON neurons to fire at the offset of sound depends on strong and precise synaptic inhibition provided by glycinergic neurons in the medial nucleus of the trapezoid body (MNTB). Here, we investigated the anatomic and physiological maturation of MNTB-LSO connectivity in mice before and after the onset of hearing. We observed a period of bouton proliferation without accompanying changes in topographic precision before hearing onset. This was followed by bouton elimination and an unexpected decrease in the tonotopic precision after hearing onset. These results provide new insight into the development of inhibition to the SPON.


Assuntos
Complexo Olivar Superior , Corpo Trapezoide , Masculino , Feminino , Camundongos , Animais , Humanos , Vias Auditivas/fisiologia , Núcleo Olivar/fisiologia , Neurônios/fisiologia
10.
J Comp Neurol ; 531(16): 1633-1650, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37585320

RESUMO

The parallel closed-loop topographic connections between subareas of the inferior olive (IO), cerebellar cortex, and cerebellar nuclei (CN) define the fundamental modular organization of the cerebellum. The cortical modules or zones are organized into longitudinal zebrin stripes which are extended across transverse cerebellar lobules. However, how cerebellar lobules, which are related to the cerebellar functional localization, are incorporated into the olivo-cortico-nuclear topographic organization has not been fully clarified. In the present study, we analyzed the lobular topography in the CN and IO by making 57 small bidirectional tracer injections in the lateral zebrin-positive stripes equivalent with C2, D1, and D2 zones in every hemispheric lobule in zebrin stripe-visualized mice. C2, D1, and D2 zones were connected to the lateral part of the posterior interpositus nucleus (lPIN), and caudal and rostral parts of the lateral nucleus (cLN, rLN), respectively, and from the rostral part of the medial accessory olive (rMAO), and ventral and dorsal lamellas of the PO (vPO, dPO), respectively, as reported. Within these areas, crus I was specifically connected to the ventral parts of the lPIN, cLN, and rLN, and from the rostrolateral part of the rMAO and the lateral parts of the vPO and dPO. The results indicated that the cerebellar modules have lobule-related subdivisions and that crus I is topographically distinct from other lobules. We speculate that crus I and crus I-connected subdivisions in the CN and IO are involved more in nonmotor functions than other neighboring areas in the mouse.


Assuntos
Núcleos Cerebelares , Núcleo Olivar , Camundongos , Animais , Vias Neurais , Córtex Cerebelar , Cerebelo
11.
Elife ; 122023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526175

RESUMO

The inferior olive provides the climbing fibers to Purkinje cells in the cerebellar cortex, where they elicit all-or-none complex spikes and control major forms of plasticity. Given their important role in both short-term and long-term coordination of cerebellum-dependent behaviors, it is paramount to understand the factors that determine the output of olivary neurons. Here, we use mouse models to investigate how the inhibitory and excitatory inputs to the olivary neurons interact with each other, generating spiking patterns of olivary neurons that align with their intrinsic oscillations. Using dual color optogenetic stimulation and whole-cell recordings, we demonstrate how intervals between the inhibitory input from the cerebellar nuclei and excitatory input from the mesodiencephalic junction affect phase and gain of the olivary output at both the sub- and suprathreshold level. When the excitatory input is activated shortly (~50 ms) after the inhibitory input, the phase of the intrinsic oscillations becomes remarkably unstable and the excitatory input can hardly generate any olivary spike. Instead, when the excitatory input is activated one cycle (~150 ms) after the inhibitory input, the excitatory input can optimally drive olivary spiking, riding on top of the first cycle of the subthreshold oscillations that have been powerfully reset by the preceding inhibitory input. Simulations of a large-scale network model of the inferior olive highlight to what extent the synaptic interactions penetrate in the neuropil, generating quasi-oscillatory spiking patterns in large parts of the olivary subnuclei, the size of which also depends on the relative timing of the inhibitory and excitatory inputs.


Assuntos
Núcleos Cerebelares , Núcleo Olivar , Camundongos , Animais , Núcleo Olivar/fisiologia , Neurônios/fisiologia , Células de Purkinje/fisiologia , Cerebelo/fisiologia , Potenciais de Ação/fisiologia
12.
J Comp Neurol ; 531(14): 1381-1388, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37436768

RESUMO

The principal neurons (PNs) of the lateral superior olive nucleus (LSO) are an important component of mammalian brainstem circuits that compare activity between the two ears and extract intensity and timing differences used for sound localization. There are two LSO PN transmitter types, glycinergic and glutamatergic, which also have different ascending projection patterns to the inferior colliculus (IC). Glycinergic LSO PNs project ipsilaterally while glutamatergic one's projections vary in laterality by species. In animals with good low-frequency hearing (<3 kHz) such as cats and gerbils, glutamatergic LSO PNs have both ipsilateral and contralateral projections; however, rats that lack this ability only have the contralateral pathway. Additionally, in gerbils, the glutamatergic ipsilateral projecting LSO PNs are biased to the low-frequency limb of the LSO suggesting this pathway may be an adaptation for low-frequency hearing. To further test this premise, we examined the distribution and IC projection pattern of LSO PNs in another high-frequency specialized species using mice by combining in situ hybridization and retrograde tracer injections. We observed no overlap between glycinergic and glutamatergic LSO PNs confirming they are distinct cell populations in mice as well. We found that mice also lack the ipsilateral glutamatergic projection from LSO to IC and that their LSO PN types do not exhibit pronounced tonotopic biases. These data provide insights into the cellular organization of the superior olivary complex and its output to higher processing centers that may underlie functional segregation of information.


Assuntos
Colículos Inferiores , Complexo Olivar Superior , Animais , Camundongos , Ratos , Colículos Inferiores/fisiologia , Vias Auditivas/fisiologia , Gerbillinae , Núcleo Olivar/fisiologia
13.
Nat Neurosci ; 26(8): 1394-1406, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474638

RESUMO

The brain generates predictive motor commands to control the spatiotemporal precision of high-velocity movements. Yet, how the brain organizes automated internal feedback to coordinate the kinematics of such fast movements is unclear. Here we unveil a unique nucleo-olivary loop in the cerebellum and its involvement in coordinating high-velocity movements. Activating the excitatory nucleo-olivary pathway induces well-timed internal feedback complex spike signals in Purkinje cells to shape cerebellar outputs. Anatomical tracing reveals extensive axonal collaterals from the excitatory nucleo-olivary neurons to downstream motor regions, supporting integration of motor output and internal feedback signals within the cerebellum. This pathway directly drives saccades and head movements with a converging direction, while curtailing their amplitude and velocity via the powerful internal feedback mechanism. Our finding challenges the long-standing dogma that the cerebellum inhibits the inferior olivary pathway and provides a new circuit mechanism for the cerebellar control of high-velocity movements.


Assuntos
Cerebelo , Núcleo Olivar , Núcleo Olivar/fisiologia , Cerebelo/fisiologia , Neurônios/fisiologia , Células de Purkinje/fisiologia , Axônios
14.
Neurosurg Rev ; 46(1): 181, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37468768

RESUMO

The dentato-rubro-olivary pathway, also known as the Guillain-Mollaret triangle (GMT) or myoclonic triangle, consists of the dentate nucleus, the red nucleus, and the inferior olivary nucleus (ION). GMT is important for motor coordination and control, and abnormalities in this network can lead to various neurological disorders. The present study followed a systematic approach in conducting a review on GMT studies. The inclusion criteria were limited to human subjects with primary objectives of characterizing and evaluating GMT syndromes, and the methodology used was not a determining factor for eligibility. The search strategy used MeSH terms and keywords relevant to the study's objective in various databases until August 2022. A total of 76 studies were included in the review after assessing 527 articles for eligibility based on the final inclusion criteria. Most of the studies evaluated the GMT in human subjects, with the majority utilizing magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), or combination of them. The review found that Hypertrophic olivary degeneration (HOD), a common consequence of GMT damage, has diverse underlying causes, including stroke, brainstem cavernous malformations, and structural impairments. Palatal tremor, ocular myoclonus, ataxia, nystagmus, and vertigo were frequently reported symptoms associated with HOD. This systematic review provides comprehensive insights into the association between GMT and various neurological syndromes, shedding light on the diagnostic, etiological, and prognostic aspects of GMT dysfunction. Understanding the role of the GMT and its implications in movement disorders could pave the way for improved treatment options and better management of neurological conditions related to this critical brainstem pathway.


Assuntos
Imagem de Tensor de Difusão , Acidente Vascular Cerebral , Humanos , Imagem de Tensor de Difusão/métodos , Síndrome , Núcleo Olivar/metabolismo , Núcleo Olivar/patologia , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/complicações , Hipertrofia/diagnóstico , Hipertrofia/etiologia , Hipertrofia/patologia
15.
Clin Neurol Neurosurg ; 232: 107871, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37413873

RESUMO

Hypertrophic olivary degeneration (HOD) is a rare condition caused by lesions of the dentato-rubro-olivary pathway, usually bilateral. We presented a case of a 64-year old male with HOD caused by a unilateral, posterior pontine cavernoma. The patient has not developed the typical palate myoclonus until recently. Isolated hand myoclonus with coexisting asterixis was present for years. This case shows unique HOD symptomatology and emphasizes the important role of MRI in the differential diagnosis of monomelic myoclonus.


Assuntos
Mioclonia , Núcleo Olivar , Masculino , Humanos , Pessoa de Meia-Idade , Núcleo Olivar/patologia , Degeneração Neural/patologia , Mioclonia/etiologia , Tremor/complicações , Ponte/patologia , Hipertrofia/patologia , Imageamento por Ressonância Magnética/efeitos adversos
16.
J Neurosci ; 43(22): 4093-4109, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37130779

RESUMO

The medial superior olive (MSO) is a binaural nucleus that is specialized in detecting the relative arrival times of sounds at both ears. Excitatory inputs to its neurons originating from either ear are segregated to different dendrites. To study the integration of synaptic inputs both within and between dendrites, we made juxtacellular and whole-cell recordings from the MSO in anesthetized female gerbils, while presenting a "double zwuis" stimulus, in which each ear received its own set of tones, which were chosen in a way that all second-order distortion products (DP2s) could be uniquely identified. MSO neurons phase-locked to multiple tones within the multitone stimulus, and vector strength, a measure for spike phase-locking, generally depended linearly on the size of the average subthreshold response to a tone. Subthreshold responses to tones in one ear depended little on the presence of sound in the other ear, suggesting that inputs from different ears sum linearly without a substantial role for somatic inhibition. The "double zwuis" stimulus also evoked response components in the MSO neuron that were phase-locked to DP2s. Bidendritic subthreshold DP2s were quite rare compared with bidendritic suprathreshold DP2s. We observed that in a small subset of cells, the ability to trigger spikes differed substantially between both ears, which might be explained by a dendritic axonal origin. Some neurons that were driven monaurally by only one of the two ears nevertheless showed decent binaural tuning. We conclude that MSO neurons are remarkably good in finding binaural coincidences even among uncorrelated inputs.SIGNIFICANCE STATEMENT Neurons in the medial superior olive are essential for precisely localizing low-frequency sounds in the horizontal plane. From their soma, only two dendrites emerge, which are innervated by inputs originating from different ears. Using a new sound stimulus, we studied the integration of inputs both within and between these dendrites in unprecedented detail. We found evidence that inputs from different dendrites add linearly at the soma, but that small increases in somatic potentials could lead to large increases in the probability of generating a spike. This basic scheme allowed the MSO neurons to detect the relative arrival time of inputs at both dendrites remarkably efficient, although the relative size of these inputs could differ considerably.


Assuntos
Localização de Som , Complexo Olivar Superior , Animais , Feminino , Complexo Olivar Superior/fisiologia , Gerbillinae , Neurônios/fisiologia , Estimulação Acústica , Localização de Som/fisiologia , Núcleo Olivar/fisiologia , Vias Auditivas/fisiologia
17.
Sci Rep ; 13(1): 7114, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130860

RESUMO

The olivocerebellar projection is organized into an intricate topographical connection from the inferior olive (IO) subdivisions to the longitudinally-striped compartments of cerebellar Purkinje Cells (PCs), to play an essential role in cerebellar coordination and learning. However, the central mechanisms for forming topography need to be clarified. IO neurons and PCs are generated during overlapping periods of a few days in embryonic development. Therefore, we examined whether their neurogenic timing is specifically involved in the olivocerebellar topographic projection relationship. First, we mapped neurogenic timing in the entire IO by using the neurogenic-tagging system of neurog2-CreER (G2A) mice and specific labeling of IO neurons with FoxP2. IO subdivisions were classified into three groups depending on their neurogenic timing range. Then, we examined the relationships in the neurogenic-timing gradient between IO neurons and PCs by labeling topographic olivocerebellar projection patterns and PC neurogenic timing. Early, intermediate, and late groups of IO subdivisions projected to late, intermediate, and early groups of the cortical compartments, respectively, except for a few particular areas. The results indicated that the olivocerebellar topographic relationship is essentially arranged according to the reverse neurogenic-timing gradients of the origin and target.


Assuntos
Cerebelo , Núcleo Olivar , Feminino , Gravidez , Camundongos , Animais , Núcleo Olivar/fisiologia , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Núcleos Cerebelares , Proteínas do Tecido Nervoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos
18.
Neuropathology ; 43(6): 479-485, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37165430

RESUMO

Genetic Creutzfeldt-Jakob disease (gCJD) with a V180I mutation (V180I gCJD) is the most common type of gCJD in Japan, characterized by an older age at onset, slower progression, and moderate to severe cortical degeneration with spongiform changes and sparing of the brainstem and cerebellum. Degeneration of the inferior olivary nucleus (IO) is rarely observed in patients with CJD but is known to occur in fatal familial insomnia (FFI) and MM2-thalamic-type sporadic CJD (sCJD-MM2T) involving type 2 prion protein (M2T prion). Here we report on an 81-year-old Japanese woman who initially developed depressive symptoms followed by progressive cognitive impairment, myoclonus, and hallucinations and died after a clinical course of 23 months. Insomnia was not evident. Genetic analysis of the prion protein (PrP) identified a V180I mutation with methionine/valine heterozygosity at codon 129. Pathologic analysis demonstrated extensive spongiform degeneration, neuronal loss in the cortices, and weak synaptic-type PrP deposition. Except for IO degeneration, the clinicopathologic features and Western blotting PrP band pattern were compatible with those of previously reported V180I gCJD cases. Quantitative analysis revealed that the neuronal density of the IO, especially in the dorsal area, was considerably reduced to the same extent as that of a patient with sCJD-MM2T but preserved in other patients with V180I gCJD and sCJD-MM1 (this patient, 2.3 ± 0.53/mm2 ; a patient with sCJD-MM2T, 4.2 ± 2; a patient with V180I gCJD, 60.5 ± 9.3; and a patient with sCJD-MM1, 84.5 ± 17.9). Use of the protein misfolding cyclic amplification (PMCA) method confirmed the presence of the M2T prion strain, suggesting that the latter might be associated with IO degeneration in V180I gCJD. Autopsy studies are necessary to better understand the nature of CJD, since even if patients present with the common clinical picture, pathologic analysis might provide new insights, as was the case here.


Assuntos
Síndrome de Creutzfeldt-Jakob , Príons , Feminino , Humanos , Idoso de 80 Anos ou mais , Príons/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Autopsia , Núcleo Olivar/patologia
19.
Zoolog Sci ; 40(2): 141-150, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042693

RESUMO

The cerebellum receives inputs via the climbing fibers originating from the inferior olivary nucleus in the ventral medulla. In mammals, the climbing fibers entwine and terminate onto both major and peripheral branches of dendrites of the Purkinje cells. In this study, the inferior olivary nucleus and climbing fiber in the goldfish were investigated with several histological techniques. By neural tracer application to the hemisphere of the cerebellum, labeled inferior olivary neurons were found in the ventral edge of the contralateral medulla. Kainate stimulated Co + + uptake and gephyrin immunoreactivities were found in inferior olivary neurons, indicating, respectively, that they receive both excitatory (glutamatergic) and inhibitory (GABAergic or glycinergic) inputs. Inferior olivary neurons express vglut2.1 transcripts, suggesting they are glutamatergic. Around 85% of inferior olivary neurons were labeled with anti-calretinin antiserum. Calretinin immunoreactive (ir) climbing fiber terminal-like structures were distributed near the Purkinje cells and in the molecular layer. Double labeling immunofluorescence with anti-calretinin and zebrin II antisera revealed that the calretinin-ir climbing fibers run along and made synaptic-like contacts on the major dendrites of the zebrin II-ir Purkinje cells. In teleost fish, cerebellar efferent neurons, eurydendroid cells, also lie near the Purkinje cells and extend dendrites outward to intermingle with dendrites of the Purkinje cells within the molecular layer. Here we found no contacts between the climbing fiber terminals and the eurydendroid cell dendrites. These results support the idea that Purkinje cells, but not eurydendroid cells, receive strong inputs via the climbing fibers, similar to the mammalian situation.


Assuntos
Carpa Dourada , Núcleo Olivar , Animais , Núcleo Olivar/fisiologia , Fibras Nervosas/fisiologia , Neurônios , Células de Purkinje/fisiologia , Mamíferos
20.
Commun Biol ; 6(1): 432, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076594

RESUMO

Principal neurons (PNs) of the lateral superior olive nucleus (LSO) in the brainstem of mammals compare information between the two ears and enable sound localization on the horizontal plane. The classical view of the LSO is that it extracts ongoing interaural level differences (ILDs). Although it has been known for some time that LSO PNs have intrinsic relative timing sensitivity, recent reports further challenge conventional thinking, suggesting the major function of the LSO is detection of interaural time differences (ITDs). LSO PNs include inhibitory (glycinergic) and excitatory (glutamatergic) neurons which differ in their projection patterns to higher processing centers. Despite these distinctions, intrinsic property differences between LSO PN types have not been explored. The intrinsic cellular properties of LSO PNs are fundamental to how they process and encode information, and ILD/ITD extraction places disparate demands on neuronal properties. Here we examine the ex vivo electrophysiology and cell morphology of inhibitory and excitatory LSO PNs in mice. Although overlapping, properties of inhibitory LSO PNs favor time coding functions while those of excitatory LSO PNs favor integrative level coding. Inhibitory and excitatory LSO PNs exhibit different activation thresholds, potentially providing further means to segregate information in higher processing centers. Near activation threshold, which may be physiologically similar to the sensitive transition point in sound source location for LSO, all LSO PNs exhibit single-spike onset responses that can provide optimal time encoding ability. As stimulus intensity increases, LSO PN firing patterns diverge into onset-burst cells, which can continue to encode timing effectively regardless of stimulus duration, and multi-spiking cells, which can provide robust individually integrable level information. This bimodal response pattern may produce a multi-functional LSO which can encode timing with maximum sensitivity and respond effectively to a wide range of sound durations and relative levels.


Assuntos
Localização de Som , Complexo Olivar Superior , Animais , Camundongos , Vias Auditivas/fisiologia , Localização de Som/fisiologia , Núcleo Olivar/fisiologia , Neurônios/fisiologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...